

LCA for Devices

Eco-Design

Circularity

IPAC-RS Webinar Nov 2022

- Design owner of many of our Medical Devices (MD) and Drug Device Combination Products (DDC) \rightarrow Owning and maintaining DHF
- Creates MD and DDC Platforms for various drugs
- Selling products across the world and compliant to all regional regulations

https://www.osram.de/os/company/intellectual_property_ip.jsp

Greenhouse gas emissions

2% are directly controllable by Sanofi

55

Direct

23% indirectly through influence on direct suppliers

Tier 1 (direct suppliers)

Tier 2 and Tier 3 - ∞ (suppliers of suppliers)

Source: WifOR Institute "Sozioökonomische und ökologische Wirkungsanalyse von Sanofi in Deutschland" (Dezember 2020)

Life Cycle Assessment (LCA) as standardized methodology

- Recognized and Scientific based standard to assess Product Environmental Footprint (PEF)
- Identifying levers for eco-design measures
- LCA for Devices conducted since early 2020
 - Cross-Functional Sanofi team supported by ext. Consultant (2019-2022)
 - Own Expert team as of Q4/2022
 - Own LCA software in roll-out process in Q4/2022

Reusable system significantly less impactful, Raw materials drive disposable system impacts

- Reusable system induces > 60% lower environmental impact than disposable system over full lifetime
- Tertiary Pack and cartridge packaging/distribution as main contributors
- impacts mainly caused at raw material stage and manufacturing, e.g. Component Transport trays

Impact of raw materials on Selected Environmental indicators

From plastics and additives currently used in devices these materials are the most problematic

- Polycarbonate (PC, BP(A) discussion)
- Polytetrafluorethylene (PTFE – Teflon, PFAS discussion)
- Titandioxide (TiO2, → SVHC)

Eco-Design opportunities

Reducing environmental impact per dose of major contributors

Eco-Design Devices - Main takeaways

Our Focus

Reduce device impact per dose, and offer reusable solutions where feasible

Our Challenges

True circular economy, growing cost pressure, user acceptance of reusables, regulatory challenges

TRUE Circularity, no green-washing

Invent & produce new **valuable** products from our waste streams Regulations and value propositions to be re-defined!

Appendices

EcoDesign & Sustainability in Device Development

Biggest impact made in early development Phase for both new and existing devices

Concept Design Consideration

- Understand user (patients, clinicians, HCPs), markets, and regulatory needs
- Environmental impact targets
- Current & Future Device Competition
- Investigate into device and manufacturing concepts
- Easy-to-manufacture
- Technical Feasibility

EcoDesign & Sustainability Considerations

- Aware of components life cycles
- What resources needed
- Materials globally scarce, or problematic (conflict, SVHC)
- Materials & components recyclable
- Drug units & Doses per Device
- Single or multiple use Device?
- Disposable or Reusable Device?
- In-use lifetime impacting both cost and emissions-per-dose
 Device enabling @Home use

Initial Life cycle Assessment

- Identify improvement potentials
- Where and how components, and devices can be manufactured
- Logistics impact
- Non-renewable energy depletion
- Emissions during use phase
- Waste generated over LC
- Circular economy approach

Sanofi's renewed contract with society

Affordable access

- Create a Global Health Unit that gives access and supply continuity to 30 essential life-changing medicines⁽¹⁾ at no-profit to the world's 40 poorest countries
- Donate 100,000 vials to treat Rare Disease patients every year free of charge⁽²⁾
- Develop a global access plan for all new products with the goal to make available our new innovation within 2 years of the launch in the U.S.

R&D for unmet needs

- Vulnerable communities
- **Eradicate Polio**
- Eradicate Sleeping disease in humans by 2030
- Develop innovative medicines to eliminate cancer deaths in children

Efficiency & Sustainability

- Healthy planet
- 100% blister-free vaccines by 2027
- 100% eco-design for all our new products by 2025
- 100% renewable energy for our electricity in all our sites by 2030
- 100% carbon neutral car fleet in 2030⁽³⁾

Beyond the work place

- An inclusive work place
- A senior leadership community representative of society by 2025
- Social & economic engagement in all communities where we operate
- From leaders to citizens –
 CSR is embedded in our
 leaders' career development
 path

- 1.As defined by the World Health Organization
- 2.Donation with no commercial intent
- 3.Scope: Vehicles fleet directly controlled (leased/acquired) by Sanofi and during the usage phase by Sanofi