

Particle Precision: The Importance of Sample Preparation in Insoluble Particle Analysis in Inhaled Biologic Powders

Scott Sides

Director Inhalation Product Development, AstraZeneca Pharmaceuticals LP

September 4-5, 2024 HYBRID EVENT

IPAC-RS Workshop: Inhaled Biologics: Preparing for a Future Beyond Small Molecules

Introduction for Particle Precision –IPAC-RS Conference

- The Challenges and Need for Aggregate Enumeration
- Manufacturing of Dry Powder for Inhalation for Biologics
- Qualitative Analyses of Insoluble Aggregated Material
- Overview Particle Analysis Techniques and Strategy
- Case Study for Particulate Enumeration by High Accuracy Liquid Particle Counter (HIAC)
 - Factors Influencing Sub-Visible Particle (SVP), Visible Particle (VP) Formation and Stability Post Reconstitution
- Foreign Particulate Matter (FPM) Strategy and Limits

The Challenge and Importance of Quantification of Particulates for Inhaled Biologics

- Control and measurement of particulates in protein containing formulations for inhaled "dry powder" delivery is complex:
 - Particulates can be inherent (e.g. proteinaceous aggregates), intrinsic (e.g. excipients), extrinsic (e.g. contaminants)
 - Selectivity of common analytical techniques are limited (HIAC, MFI)
 - Enumeration relies on powder reconstitution: indirect measurement of unfolded protein

Relevance of inherent particulates in the formulation:

- Potential for aggregated protein to elicit immune response (Safety)
- Correlation between in-vitro measurements and in-vivo impacts difficult and unknown
- General lack of guidance for what is acceptable for inherent particulates (Safety)

Manufacture of Inhalable Powder - Spray Drying Biologics

Lechuga-Ballesteros D, et al. (2008). Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 97(1):287-302.

Protein experiences numerous conditions during spray drying that could contribute to loss of tertiary structure (unfolding): thawing, sheer forces (mixing and atomization), heat, air/liquid interface, solid/liquid interface, vibration.

Spray dried insulin can form aggregates (HMWP) at aggressive outlet temperature conditions. Stabilization via excipients and controlling spray drying conditions enables formation of room temperature stable particles with appropriate shelf life > 24 months when kept dry

Ståhl, K., Claesson, M., Lilliehorn, P., Lindén, H., and Bäckström, K. (2002) The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation, International Journal of Pharmaceutics 233, 227-237.

Protein Aggregation: Impact on Product Quality

Figure 1

5

Schematic overview of a range of different aggregated states that proteins can adopt either as folded molecule or unfolded/partially unfolded ones. The latter typically result in aggregates that are difficult to dissociate without extreme conditions (high pressure, temperature, and/or denaturant concentration). Images for liquid–liquid and liquid–crystal phase separation (bottom left) are reproduced with permission from Ref. [8], as are those for aggregate phase separation (bottom right) from Ref. [9[•]].

Rdoi: 10.1016/j.copbio.2014.08.001. Epub 2014 Aug 28. PMID: 25173826; PMCID: PMC4266928.oberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014 Dec;30:211-7.

Protein Pharmaceutical Products

- Active as folded monomers
- Protein aggregation can lead to formation of soluble or insoluble aggregates
- Some soluble aggregates may be "useful", e.g.: Insulin hexamers
- Insoluble aggregates are usually not active and may pose a safety risk, e.g: capillary occlusion in parenteral products or unwanted immune response

Identification of Proteinaceous Insoluble Particles

Isolation and characterization of particulates post powder reconstitution :

- IR spectra position of Amide I and II bands indicate proteinaceous particles
- Near UV Circular Dichroism spectra suggest loss of tertiary structure for insoluble material
- Differential Scanning Fluorimetry (DSF) spectra decreased thermal stability (T_{max}) suggest partial unfolding
- Extrinsic Fluorescence (Bis ANS) spectra indicate increased exposure of hydrophobic surface of the protein

Tao, Y., Chen, Y., Howard, W. *et al.* Mechanism of Insoluble Aggregate Formation in a Reconstituted Solution of Spray-Dried Protein Powder. *Pharm Res* **40**, 2355–2370 (2023).

- In depth characterization of insoluble aggregates from 2 separate Fab's post spray drying
- HDX experiments suggest spray drying disrupted protein structure exposing hydrophobic residues in heavy-chain CDR-1.
- Upon reconstitution insoluble aggregate formation likely occurs due to hydrophobic interactions

Proteinaceous insoluble solids

Pharmaceutical Research (2023) 40:2355-2370

2361

Fig.3 FTIR analysis of the insoluble particles from the reconstituted solution. Shown are the sediments of Fab-1 (a) and Fab-2 (b) after processing from the insoluble particles under FTIR. (c) FTIR spectra of the sediments of Fab-1 and Fab-2 compated with an internally manufactured reference protein. The FTIR spectra of the insoluble particles were comparable to that of the reference protein, indicating protein-like structures.

Analytical Characterization Techniques Related to Aggregate Size

Control and Mitigation of Particles in the Development of Protein Therapeutics, Particle SWAT Team, BioPharmaceutical Development, AZ, 17Sep13

7

Enumeration of Proteinaceous Insoluble Particles

Objective: To develop compendial methodology capable of enumeration of all particulates (aggregates and foreign) *post reconstitution* of protein containing spray dried powder for inhaled delivery using High Accuracy Liquid Particle Counter (HIAC).

- Control of product quality only and not intended for in-vivo relevance
- Early development studies supported by MicroFlow Imaging

The Powder Reconstitution Puzzle: What are the important factors?

Protein Concentration

Serial Dilution Aggregate/Sample Stability (time and diluent) Diluent: Buffer Composition and pH Scale of Preparation
Container Type
Order of Addition
Use of Chaotrope Diluent > (FPM)

Case Study: Analytical development work for HIAC was based on spray dried powder for inhalation:

• 40% w/w active protein:60% excipients (Protein PI > 8)

Protein Concentration versus Aggregate Formation (water diluent)

*Particle counts appear relatively linear across all channels at concentration below 2.5 mg/mL

Protein Concentration – Normalized per mg Powder

Normalized Particle counts per mg powder (powder = 40% protein + 60% excipients)

Normalized data for particle counts/mg powder indicate slight increase in counts at 0.5mg/mL compared to the 1.5 and 2.5mg/mL protein concentrations:

- Trend should be flat if response is completely independent of protein concentration
- Potentially some higher variability at the 0.5 mg/mL concentration as well.

Impact of Serial Dilution (water diluent)

0.0

0.5

1.0

1.5

Protein Concentration (mg/mL)

2.0

3.0

0.5

1.0

1.5

Protein Concentration (mg/mL)

2.0

2.5

0.0

2.5

no apparent disassociation or concentration dependent shift in size distribution

3.0

Serial Dilution - Normalized per mg Powder

Normalized: Particle Counts/mg Powder							
HIAC Channel	Dilution 5	Dilution 4	Dilution 3	Dilution 2	Dilution 1		
Particle Size	0.4 mg/mL	0.9 mg/mL	1.3 mg/mL	1.8mg/mL	2.7 mg/mL		
≥2µm	1366	1273	1141	1093	1024		
≥5µm	291	277	233	237	227		
≥10µm	80	73	61	61	58		
≥25µm	3	4	3	3	3		

■ 0.4 mg/mL ■ 0.9 mg/mL ■ 1.3 mg/mL ■ 1.8 mg/mL ■ 2.7 mg.mL

Aggregate Formation and Stability (water diluent)

± 1 std dev at 1.5 and 2.5 hr in all channels at all concentrations: Provides 1hr window to take particle count readings

Observed a steady but slow trend downward in particle counts with time in each channel across all concentrations (gradual aggregate disassociation, excipient solubility, degassing?)

Impact of Diluent Composition on SVP/Aggregate Formation

- Previous HIAC data were generated using water as the sample diluent for reconstitution.
- 3 separate observations of slight increases in particle counts relative to decreasing protein concentration (normalized data)
- Sample preparation produces samples with varying protein concentration but also produce varying excipient concentrations and pH

Initial Diluent Screen for Impact on Aggregate Formation ≥2µm Average Particle Counts per mL

Observations

- absolute counts per mL are relatively linear in each diluent. (ie. total counts increase as protein concentration increases)
- Significantly more SVP present in Buffer 2 at pH 7.4
- Slopes of lines are different indicating rate of SVP formation is potentially dependent on diluent
- Buffer 1 and Buffer 1+primary excipient diluents practically equal (suggest Buffer 1 at pH 5.5 as the controlling factor)

Buffer type may affect protein surface charge influencing propensity of aggregation

Saurabh S, Zhang Q, Seddon JM, Lu JR, Kalonia C, Bresme F. Unraveling the Microscopic Mechanism of Molecular Ion Interaction with Monoclonal Antibodies: Impact on Protein Aggregation. Mol Pharm. 2024 Mar 4;21(3):1285-1299. doi: 10.1021/acs.molpharmaceut.3c00963. Epub 2024 Feb 12. PMID: 38345400; PMCID: PMC10915798.

14

Normalized Data for Samples Prepared with Various Diluents

Clear impact of diluent on particle count data normalized to mg total powder, buffered diluent = better stability

Comparison of Normalized Particle Count Data per Diluent

Oneway Analysis of Particles <5um By Diluent</p>

Diluent

Statistical box plots of particle count data normalized to mg powder in various diluents:

- Stabilized Aggregate formation on a per mg basis (normalized data) with buffered diluents
 - corrects one of the biggest obstacles encountered so far with SVP method development – concentration dependent particle counts
- Over-all, particle counts are lower when samples prepared with Buffer 1 pH 5.5 diluent.
- Wider variance in SVP counts with plots for water and Buffer 2 pH 7.4 demonstrates aggregate formation
- Presence of primary excipient less impactful than buffered diluent
- pH is impacted as excipients are diluted when diluent is **not** buffered

Aggregate Formation and Stability (Buffer 1 pH 5.5 diluent)

- ± 1 std dev at 1.5 and 2.5 hr in all channels at all concentrations: Provides 1hr window to take particle count readings
- Slow trend downward in particle counts with time in each channel across all concentrations (gradual aggregate disassociation, excipient solubility, continued degassing?)
- no shift in distribution (small to large aggregates)
- Normalized data (counts / mg powder) show no trend of
- ¹⁷ increasing particle counts as concentration decreases

pH Drives SVP/VP Formation with Buffer 1

Visual Assessments made for samples prepared in Buffer 1 at pH 6.1 and 7.1 due to particle counts exceeding HIAC sensor limits

Visual assessment-clear indication of increasing SVP/VP formation as diluent pH is increased with Buffer 1

Placebo controls at all pH values were clear and free of SVP/VP by HIAC and visual assessment

pH Drives SVP/VP Formation with Buffer 3

			Particles/	mg powder	
Sample ID	Diluent	≥2µm	≥5µm	≥10µm	≥25µm
Diluent Blank	Buffer 3 2.5	3		0	
Placebo Powder	Buffer 3 2.5	2	1	0	0
40% Active Powder	Buffer 3 2.5	3	1	0	0
40% Active Powder	Chaotrope	9	1	0	0

Visual Assessments made for samples prepared in Buffer 3 buffer at pH 5.1 and 6.1 due to particle counts exceeding sensor limits

Visual assessments-clear indication of increasing SVP/VP formation as diluent pH is increased with Buffer 3

HIAC data for 40% active powder when normalized to particles/mg powder shows Buffer 3 at pH 2.5 is equivalent to diluent blank, placebo, and chaotrope preparations – **very low aggregate formation**

Buffer Selection Impacts SVP/VP Formation: Buffer 1 vs Buffer 3

Visual Assessment for samples prepared in Buffer 1 and Buffer 3 buffers buffered at pH 5.1 and 6.1.

Visual Assessment shows Buffer 3 to have more SVP formation relative to Buffer 1 at 5.1 – indicates potential for buffer selection to impact aggregate formation independent of pH

At pH 6.1 both Buffer 1 and Buffer 3 are showing significant visible aggregate formation suggesting pH is the over riding factor

Placebo controls at all pH values were visually clear of particulates and had comparable counts by HIAC as diluent blanks – indicates predominance of particulates are related to protein aggregates (inherent).

Scale of Sample Preparation (Buffer 1 pH 5.5)

Protein Concentration held constant at **1.5mg/mL** for each sample variant

 Data suggest minimal impact from scale of sample preparation at a single concentration (range 38mg powder/10mL to 76mg powder/20mL)

Particle Counts as a Function of Scale of Sample Prep

	Particles/mL by Scale of Preparation						
HIAC Channel	38mg/10mL	60mg/16mL	76mg/20mL				
≥2µm	13040	12631	12033				
≥5µm	2965	2864	2579				
≥10µm	743	685	763				
≥25µm	40	34	62				

Order of Addition – (Buffer 1 pH 5.5 diluent)

Study targeted understanding of how the powder is wetted and if subtle changes would impact SVP formation

Particle Counts as a Function of Order of Addition

Powder + Diluent Diluent + Powder Diluent + Powder (3 increments)

Particles/mL by Order of Addition

D 11

10

			Diluent + Powder (3
HIAC Channel	Powder + Diluent	Diluent + Powder	increments)
≥2µm	5891	6191	5985
≥5µm	1834	2131	2437
≥10µm	473	512	744
≥ 25 µm	41	37	64
zzoμm	41	57	04

• Data suggest **minimal impact** from order addition

Container Type (Buffer 1 pH 5.5 diluent)

Study targeted impact from container type and closure system on levels of SVP formed

- Polypropylene gave slightly lower compared to the glass container types
 - Easiest to work with in terms of sample prep.
 - PP would **not** allow visual assessment of visible particle measurement.
- Suggest container type and cap has minimal impact on SVP formation from the containers evaluated
- Lyo Vials Source 1 vs Source 2 = different glassware cleaning processes (data indicates source 1 is a more efficient cleaning process)

Particles/mL by container at 1.5 mg/mL sample concentration

	≥2µm	≥5µm	≥10µm	≥25µm
Agilent HS/PTFA	12108	2717	748	45
Polypropylene	9533	2683	740	28
20R-Lyo (Source 1)/rubber	11974	2979	838	40
20R-Lyo (Source 2)/rubber	13478	3731	1240	145 🔨

Factors Influencing Particle Precision

- Buffered diluent is critical for sample stability :
 - reduces concentration dependent aggregate formation
 - affects protein surface charge influencing aggregation
- Diluent pH : most significant factor in aggregate formation

- pH changes can **increase the net charge of a protein**, which can increase electrostatic repulsion between protein molecules and **reduce aggregation in aqueous solution**
- Sample Stability : (buffered diluent)
 - Time course studies identified **1hr window**.
 - No evidence of aggregate disassociation or shift in distribution
- Scale of sample preparation and order of addition (powder wetting studies), and container/closure (surface interactions) studies showed little impact on SVP formation during reconstitution for this case study

HIAC Method is Discriminating

Enumeration results for spray dried powder of varying strengths (% active).

• Higher strengths = higher particulates on a per mg powder basis

Enumeration results for a protein based spray dried powder after stressing under accelerated conditions (heat and humidity).

 Indicates that enumeration method is stability indicating

Formulation Strengths (% Active): (counts/mg powder)

Introducing FPM Selectivity via Chaotrope Diluent

			Particles	Particles	Particles	Particles
Strategy	Reconstitution		per mg powder	per mg powder	per mg powder	per mg powder
Step	Diluent	Replicate	≥2µm	≥5µm	≥10µm	≥25µm
		1	1229	207	50	3
1	Buffer 1 pH 5.5	2	1056	174	41	2
_ _	(inherent, intrinsic,	3	1129	191	45	2
	extrinsic)	Mean	1138	191	45	2

Folded Protein

Use of chaotrope diluent prevents protein aggregation

Disrupts hydrogen bonding > weakens hydrophobic effect > denatures proteins RESS?

11				
Uni	DIO	ea P	rote	ın
0	ora		1010	•••

		1	13	4	1	0	Significant reduction in
2	Chaotrope	2	17	4	0	0	particles per mg powder
_	(extrinsic)	3	9	1	0	0	(extrinsic matter remains)
		Mean	13	3	1	0	(extraste matter remains)

Conversion of Chaotropic Diluent Data to Inhaled Mass/Day

C	haotrope	Diluent for	FPM	Capsule Fill Weight = 20mg				Extrinsic Mass/Capsule			
	Particles/m	g (¹ FPM Bucke	ts)	Dorticlo		Parti	cles/Capsule				<10µm Particles
	<10µm	10 - 25µm	- >25μm	counts/mg	τ	<10µm	10 - 25µm	>25µm	narticles are		0.0010
	12	1	0	powder	5	240	20	0 —	10µm with a		0.0014
	17	0	0	converted	to	340	0	0	density of		0.0008
	9	0	0	particles		180	0	0	stainless	Mean	0.0011
Mean	12	1	0	/capsule	Mean	240	20	0		Wiedli	

¹FDA DPI / MDI Guidance

FPM Specification Acceptance Criteria Calculated as per IPAC-RS Guidance: < 0.15 mg/day for Particulates <10μm

- Worst-case assumptions based on a particle density of stainless steel and particle size of 10μm
- Refine post FPM characterization studies

Particulate data for 10-25µm and >25µm collected for data density for potentially setting of specification

Particulate Limits USP <787> : Therapeutic Protein Injections

SVP/FPM measured by light obscuration – HIAC described in USP <787> as accepted compendial method used for particulate analysis for injectables.

• Acceptance Criteria:

Acceptance Criteria: USP <787>						
Allowable Particles/container	Particle Size					
<6000	≥ 10µm					
<600	≥ 25µm					

USP <787> acceptance criteria do not seem applicable for inhaled biologic products:

- Focus particulates >10μm and >25μm (inhaled focus is <10μm)
- Inherent/Intrinsic particulate formation is a result of reconstitution and is extremely sensitive to various factors.
 - Buffer type and pH (compound specific)
 - Correlation between in-vitro measurement and clinical outcomes

Particulate Limits (IPAC-RS): Guidance for OINDP's

FPM Acceptance criteria of <0.15 mg/day for particles < 10μ m per IPAC-RS guidance with the following considerations: (Blanchard Articles)

- US EPA national ambient air quality standard for particulate matter <10 μ m (PM₁₀; 150 $\mu g/m^3$)
- EPA breathing volume assumption (20 m³ of air per day) gives 0.15mg/day maximum intake (5% of the NAAQS PM₁₀ limit)
- Mass based safety limits derived using maximum density of stainless steel (8g/cm³) and assumption that all particles were 10 µm in diameter

IPAC-RS guidance for FPM do not seem applicable for control of all particulates:

- Inherent/intrinsic particulates not present in the inhalable powder but form upon reconstitution
- Safety recommendations from current IPAC-RS guidance covers extrinsic particulates (contaminants)

Blanchard J, ., et al.; International Pharmaceutical Aerosol Consortium on Regulation; Science Foreign Particles Working Group. Foreign particles testing in orally inhaled and nasal drug products. Pharm Res. 2004 Dec;21(12):2137-47.

Blanchard J, ., et al. Best practices for managing quality and safety of foreign particles in orally inhaled and nasal drug products, and an evaluation of clinical relevance. Pharm Res. 2007 Mar;24(3):471-9.

Consortium on Regulation & Science

Key Take Aways:

- Measurement and enumeration of SVPs by HIAC in inhaled biologics (protein) powders is heavily influenced by the reconstitution process. (Protein Specific)
- Dependence on the reconstitution factors gives caution to making correlation of in-vitro results to in-vivo performance.
- In-vitro particle analysis serves as a means to evaluate and maintain product quality for this "Quality Attribute" of particulates related to protein aggregation.
- Use of chaotrope diluent provides selectivity for Foreign Particulate Matter (FPM) analysis.

Recommendation for comprehensive product quality control strategy for aggregates in IB:

SVP/FPM (inherent, intrinsic, extrinsic) analysis for inhaled biologic powders covered with a 2-step (2 diluent) HIAC enumeration strategy

Acknowledgments and Key Contributors

- David Lechuga¹
- Dana Peles¹
- Don Kerkow¹
- Gerard Masdeu¹
- Aida Edvardsson¹
- Magda Krajewska¹

- John Hoberg²
- Yoen Joo Kim³
- Mariam Ibrahim³
- Prakash Manikwar³
- Wesley Howard³
- Poozesh Sadegh ³

¹Astrazeneca, Pharmaceutical Technology & Development (PT&D) ²PPD part of Thermo Fisher Scientific, Physical and Chemical Characterization (PCC) ³Astrazeneca, BioPharmaceutical Development (BPD)

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com