REALIZING THE VISION OF DIGITALLY ENABLED, PATIENT-CENTRIC CLINICAL TRIALS

Marissa Dockendorf and Bryan J. Hansen

Global Digital Analytics and Technologies Merck & Co, Inc., Kenilworth, NJ, USA

IPAC-RS Digital Devices Roundtable Series

What is a Digital Biomarker and why is it important?

The "Traditional" Clinical Trial Paradigm is Lacking

Participant burden
Geographical limitations
Data loss between visits
Lack of real-time
feedback

Lack of adherence
Data inaccuracies
Lack of real-time data

Endpoints

May not be meaningful to patients

May be categorical or subjective

Variability and sensitivity

Transcriptional errors

Laborious data acquisition

Cost of visits

Digitally-Enabled Clinical Trials

Our aim is to deploy innovative, digital technologies in clinical trials to reduce patient burden, collect higher quality data, enrich clinical datasets, and enable rapid and informed clinical decisions.

Potential Benefits of Digitally-Enabled Clinical Trials

BENEFITS

TO THE RESEARCHER

- · Increased access and retention of patients
- More efficient and faster trial enrollment
- Increased confidence and improved medication adherence
- Augmented data sets and access to data in-between visits
- Reduced unexplained variability in data
- Improved understanding of drug and disease effect
- · More rapid and informed clinical decisions
- Potential for reduced sample size and earlier study readout
- · Access to patient-relevant endpoints

TO THE PATIENT

- · Increased access to trials
- Reduced patient and caregiver burden
- · Reduced frequency of site visits
- · Less painful sample collection
- Increased engagement and communication with the clinical trial site
- Increased precision medicine
- · Patient-relevant endpoints
- Improved medication adherence and study compliance

Digital Endpoints Are a Reality Across the Industry

The Shifting Regulatory Environment

26 April 2019 EMA/CHMP/SAWP/178058/2019 Committee for Medicinal Products for Human Use (CHMP)

Qualification opinion on stride velocity 95th centile as a secondary endpoint in Duchenne Muscular Dystrophy measured by a valid and suitable wearable device*

EMA Regulatory Science to 2025

1 June 2020 EMA/219860/2020 Human Medicines Division

Questions and answers: Qualification of digital technology-based methodologies to support approval of medicinal products Status as of June 2020

DIGITAL HEALTH INNOVATION ACTION PLAN

Digital Health Center of Excellence

The Challenge of Nonadherence

Nonadherence is Underestimated by Pill Count¹

TABLE 1. Medication Nonadherence in AstraZeneca Psychiatry Studies, 2001 to 2011

Indication	No. Subjects Receiving Active Treatment	Name of Drug Under Study	ClinicalTrials.gov Identifier (NCT no)		Subjects With > Half of PK Samples BLQ (%)	Subjects With all PK Samples BLQ (%)	Nonadherence Calculated From Pill Counts (%)
MDD	39	AZD2066*	NCT01145755	12.8	12.8	2.6	NC
MDD	91	$AZD7268^{\dagger}$	NCT01020799	28.6	16.5	12.1	2.9
MDD	100	AZD5077 [†] (quetiapine)	NCT00326144	26.0 [∥]	26.0 [∥]	26.0	2.2
GAD	169	AZD7325 [‡]	NCT00807937	33.0	22.5	16.0	2.8
GAD	309	AZD7325 [‡]	NCT00808249	33.7	21.7	13.6	5.1
CIAS	313	AZD3480 [§]	NCT00528905	34.8	20.1	15.0	4.6
MDD	331	AZD5077 [†] (quetiapine)	NCT00320268	23.3	23.3	23.3∥	0.0
GAD	413	AZD5077 [†] (quetiapine)	NCT00329264	39.2∥	39.2	39.2∥	NC

Bias in quantity of drug taken²

Bias in time of drug taken³

Adherence to inhaled therapies

- Adherence to inhaled therapies in the COPD population is low (≤50%) and rates of incorrect inhalation technique can range from 35 to 85%⁴⁻⁶, impacting clinical outcomes
- Inhaler technique as measured in one COPD study⁷:

96% self-reported correct technique

"Smart" Adherence Technology Options

Smart Packaging CCCEPAK CROUP AdhereTech

Ingestible Sensor

Smart Delivery Devices

Propeller

- Technology options to provide more accurate adherence data
- Potential to improve adherence through dosing reminders and real-time transmission of data to HCP or clinical site
- Potential to **improve dosing technique** for non-standard routes of administration, (e.g. inhalers)

We are using smart dosing approaches in select late stage trials **Suite of smart dosing technology options** to fit program/trial needs

Patient-Centric Sample Collection Devices

Dried blood collection with electronic diary

- Fingerstick, spots on DBS card
- Time and date recorded by patient

Neoteryx Mitra VAMS

- Fingerstick with accurate volume collection
- Date and time automatically collected

Seventh Sense TAP™ device

- Minimally invasive, micro-needle based
- Painless, no sharp exposure

Tasso

- External collection
- Painless, no sharp exposure

We have used patient-centric sampling approaches in several clinical trials to date. Shift toward less painful, more automated sample collection with automated date/time stamps

Resources for Use of Digital Clinical Measures

TOUR OF DUTY: Driving adoption

The Playbook: Digital Clinical Measures

Introducing the essential guide for successful remote monitoring across *clinical research*, *clinical care*, and *public health*.

V3 Framework:

Verification evaluates sample-level sensor outputs

Analytical validation evaluates the performance of an algorithm to convert sensor outputs into physiological metrics using a defined data capture protocol in a specific subject population

Clinical validation evaluates whether the physiological metric acceptably identifies, measures, or predicts a meaningful clinical, biological, physical, functional state, or experience, in the stated context of use and specified population

Precompetitive Collaboration is Critical

Areas of potential pre-competitive collaboration:

- Technology and platform development
- Studies to enable technology maturation
- Development of digital biomarkers for specific disease states
- Development of data standards
- Sharing experience (successes and failures)
- Shaping policy

Patient-centric sampling IQ group

Alzheimer's Diseases: Unmet Medical Need and Societal Burden

Digital Biomarkers: A new frontier for Alzheimer's Disease

Clinical Endpoint

Active

Passive

Novel Data to Differentiate Healthy Control & Cognitive Impairment

Evidation Health and Eli Lilly study uses Apple devices and apps to predict cognitive impairment

Study Details:

- 28 patients with MCI and 7 mild AD
- 82 healthy age-matched controls
- 12-week exploratory study

Features identifying cognitively impaired participants vs. healthy controls:

- Slower typing speeds
- Fewer text messages
- Later first steps
- Reliance on helper apps
- Poor survey compliance

Jankovic et al., KDD '19 (2019)

Minute-level Behaviorgram

Source: Jankovic et al., KDD '19 (2019)

Data Sources

Measuring Impairment with Novel Digital Signals (MINDS) Study

Study Details:

- 150 patients with MCI or early AD
- 150 healthy age-matched controls
- Duration: 6 months
- Population: US-only and remote

Primary Objectives:

Differentiate MCI, early AD, and controls

Classification Models

DEEP LEARNING

Secondary Objectives:

Feasibility, variability and adherence

Wearables and Phones:

Cognition:

Blood-based Biomarkers:

From Biology to Decisions

Biology

Device and data acquisition

Data storage

Data analysis

Raw sensor data

Quality control

AI/ML

Transmit data

Summary and Future Directions

Digitally-Enabled Clinical Trials

MINDS Study

Synergistic Benefit

Acknowledgements

Lisa Shipley
Melanie Anderson
Kevin Bateman
Mike Egan
Joe Herring
Matt Kennedy
Arie Struyk
Matt Moyer

Thank you!

